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It was noted in [1] that the center of flexure of a solid cantilever can be deter-
mined if the solution of the problem of torsion of this cantilever is available,
This assertion was generalized in [2] to the case of a hollow cantilever, In the
present paper the formulas obtained earlier [3,4] for the coordinates of the ce-
nter of flexure of a hollow cantilever are generalized with the help of a comp~
lex torsional function, to the case of a hollow compound cantilever,

1. Let us consider a cantilever composed of multiconnected prismatic bodies made
of different materials and joined together along their lateral surfaces, Then the region
occupied by any transverse cross section of the cantilever will consist of piecewise diff-
erent inclusions S;(j = 0,1,...,m) where m  is the number of inclusions wi-
thin the region §, with the lines of contact me* ¢g=1,2,...,m). Wealso
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Fig. 1
denote the contours of the cutouts of the inclusions §; by Ly (¢ =0,1,2, ..., Ny

where N ; is the number of the inclusion cutouts, We introduce the following notation:

mNg‘

m N;i
L=z Zij, l=z lek
j=0k=0 j=0g=1

m
L'=L+1, 0)=2 W;

=0
Here [, denote the sum of the contours of the regions § s lﬂ; are the cut lines, L’
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is the contour of a singly connected region and ®; is the area of the region.

Let a prismatic body of length 1 be clamped at one end and subjected at the ot-
her end to a load statically equivalent to a force P. We nlace the coordinate oricin

slallcally GuavalClil 10 a4 1QICC VY pLOLT Wib LUULULLae Ullglil

at any point of the clamped end. The Ozg-axis is directed parallel to the cantilever ax-
is and the OZy-axis is parallel to the force P (see Fig. 1), The components of the stre-
ss tensor generated by the bending of the cantilever are sought in the form [1]

(1. 1)
Oy = Oy =0y =0
Ogs = P (ax; + bz, + €) (I — z)
ay;

Oy = L2k + ar,? + exl\

2 \ Ozg /

P 0%;
O3y = ——2—(-— 73—;: + bag? -+ exz)

Hete X = X (%1, Z3) is an unknown function, and a, b and ¢ are un~

known constants,

The components of the stress tensor O33) 031 and Oy, must satisfy the following
conditions of equilibrium in the X3 cross section

3 odo— P =0, 3§ caado = 0 (L.2)
J—'om
S (xi(fsz - xgasl)d&) =0 (1,3)
J'-O
z S 033d(’) = 0 2 S 033$2d(1) = O

3=0 9]
2 S ssZ1dw 4 P (I —23) =0

Substituting the second relation of (1, 1) into the conditions (1.3), we obtain a linear al-
gebraic system the roots of which are

a = _Ino—52 b — T190 — 8155 e = 1338y — 198,
Bj ) = B ) =ty
_ff_L m
fafsf—zlo—’j,aa, Sa=2 8105 aB=1,2
i= =0
[og I1p Sa
B = ]12 111 Sl
Sz S1 (0]

Here Ij«f and Sj . are the moments of inertia and the static moments of the a-
rea @; relative tothe ;. and x,- axes.

The last two relations of (1. 1) satisfy the differential equations of equilibrium ident-
ically, When the relations (1. 1) hold, the six Beltrami-Mitchell expressions yield the

fFallawring avnreceinn far the function Ihprp £ ig the constant of m_tpu;ahgn\-
IULLUW‘.ILB Dl\yl\foal.\lll AAJL LILW llsANcLLNsRL hJ FR e =2 A v vaatr WAsaw e e AN A=) =a!
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{1.4)
Ay; = —2‘?‘5 by — ax,) — 2C
g 1+ v; 1 2}

The conditions of zero loading at the lateral surface of the cantilever yield a boundary
condition of the form
(1.5

&Y dx dz.
—7 = (0xs® + exe) - — (a2s® +em) 7 ma L

2, Let us write the function %XJ in the form

(2.1
x=¥; + CO;
Then the following problems arise for the functions @; and ¥; :
. 2.2
A(Dj == *——2 m SI' ( )
D,
} - *
T 0 ma ij (2.3)
v
AY; = -1—_?_-%-}- (bxy —ax,) B §;

oY';
3 dx d;
—F = (bzs® + exy) ——ﬁ-‘- —(az,® + exy) —B—?- on Lj

where ®; is the Prandtl stress function and ¥, is the flexure function, The first and

second condition of {1, 2) are satisfied identically,
To find the torsional momentM cx we substitute the two last relations of (1, 1) into

the left-hand side of the condition (1.2) and take into account (2, 1), After a series of
manipulations we obtain
(2.4)

Mgy = P{ci | “”‘d""*‘i | ¥ido +

j=0 wy j=0 w;

1

Y,
- S (brg — axy) yzedo + S oj —Efw dl —

L

m

= @y
dw,, !

[¥iopil —C i ®;—7 ‘ﬂ}

"Lk
il = § (d d
Bj = =5 (z1dxy — 29d71)
i}
where the symbol [...1z denotes the increment in the value of the function wi-

thin the bracket during a single passage around the contour L.
3, Let us recall certain relations which shall be used later,
The mean value of the torsion T for the whole transverse cross section is given,

according to [1], by the formula
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m m
1 0w, 1 7]
1:::2 _S__ldQ):E __S( €23 aen)
[OR dx . - do
i=0 ? wj ? =0 “)] w@;f axl axg

Using Hooke's law and the last two formulas of (1, 1) and taking (1, 4) into account, we
obtain

3.
T = P(aS; — bS, + Cx,) (3.1)
m m m
v, . V. . 14w,
$i= Y gwd =Y Fad %= §; -
e j - J 4 )
=0 1=0 ot
where (21, Ta'} are the coordinates of the center of gravity of the area ,

relative to the -5, and z, axes.
We see from the formula (3, 1) that the cantilever will experience pure flexure wi-
thout torsion if the constant (' is found from the formula

1 (3.2)
C = —,zo-(sz ""aSl)
Using Green's formula
(’)vj 6u]- (3.3)
S (U;AV; — VAU do.= g (U,- =Ly, -‘-ﬁ) dl
@, L,
for U;=1 and V; = ¥, and taking into account the first formula of (2.
3), we obtain
(3.4)
v, 2%
S __a_nl dl = — 5 ‘:v (axg, — bZ1) O,
L.

Here L, denotes an arbitrary closed contour traversed anticlockwise, lying in the cross
section of the cantilever, and %y, T3¢ are the coordinates of the center of gravity of
the area @, contained within L.

The above formula must hold for eachinternal contour within the cross section, and
also for the outer contour of the cross section,

Using the fact that the function @; is single-valued and, that mjkl- = op!" —

O, dljyt = —dly, we find that

200y, (3.5)
Scp,- g1 =0

]
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In addition to the formulas (3. 2), (3.4) and (3, 5) we have

(3.6)
v, oY,
. J = 2 dl =
S(D, —iq1 =0, g(p, Ldi=0
Lik Lik
the validity of which shall be shown below,
Let us introduce a new harmonic function
(3.7)
lIfjl = lIJ‘J —_ T + (b.l'z X — axlzxg)
We also have [5]
: (3.8)
0 _ %, 0% _ %,
oz, Oy L oz, dz, 2

The projection of the displacement on the Oxg axis can be found from the formula [5]

(3.9
Ugj = usjo + Okn; (=2 — ") +
M'
. deq Oe,
| [eom + @' — 2 (‘a‘f — ) dem
M,

We can assume, without affecting the generality, that ug® = Okni” = 0.

Taking into account in (3, 9) Hooke's law, the two last formulas (1. 1), (2. 1) and
(3.8) and introducing the harmonic function ¥;,, conjugate to ¥, we finally ob-
tain, after integration

s+ 1
Usj = VJEJ_ P(— Wi+ Co)+ 2 [(xl — @) g (— ¥ia+

o) + (@ — ) 5 (— ¥ Co) t P )

where (F (zy, 2y, x,) is a polynomial.
Since Uj,; and @; are singlevalued functions, so is ¥ . Thus 0¥, / !
and 0¥;, / on and consequently 9%; / al and §¥; / dn are eq-

ual to each other along the cut edges, which completes the proof.
4, Applying the Green's formula (3,3) to the functions @; and ¥ j and ta-
king into account the first equations fo (2, 2) and (2, 3), we obtain

i 2v
T '\ (bxl—axg)CDdco+2ZS ¥do =

=0 ] =0 w;

o e e
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Taking due account in the above relations of (3,473, 6), (3. 8) and of the fact that
on {raversing the contour [/ the increments lo; ¥l =0 and S @;
@¥;/0hdl =0, we obtain

i i+\, \ (bxy — az,) Dydo + Zig ¥ido =

=0 ::) e 5
No

2 op
Vo {»- Cooto0 (023,%° — b3~ + § ‘ Cox (025, —
1 vy o

Ny

bxic )woh %" Z { + v, ZCJK (axzcjk - bxlc]k) 15413 +

j=1

2 i?‘jmjktji/ “—$ (i)}—-g-zi dl — 2§ {’)jkz ?fwdi

where Cj denote the values of @; on the contours Lj;, o is the area enclos-
ed within the contour Ly and  (z,/*, 2,5 are the coordinates of the cen-
ter of gravity of the area ©j. This gives the second term of the last equation which,
on substitution into (2.4), yields

% > (4. 1)
ﬂ'{ck = P {C Jzzowg] @jdm "5‘ ‘—;“:’;m&) (bxg e a{l}l) xlxﬁd(’) —_—
Z f + \ (b — azs) @ydo + - [" (a29,™ — bz1c™) X
J==0 wj

No
Cootdge + Z (@9 — by F) cﬁkw(lk:l +

ktzl

1
(@2ge* — by ) Cpjy — ==\ @ _..,... Idl —
1 + v; Z 2 §

=1 K=t
c§ @; f%i’-‘dl

Using the boundary condition (2, 3) and the Gauss-Ostrogradskii formula and taking {3.
8) into account, we find that m the last formuia

&cp, azj dl = -—22 S (axy -+ bas + €) pydo> —

=0 oy

(4. 2)

i & [(Mlz + ex1) ‘i—% 4 (bx? 4 exs) g:: ]dw =

=0 wj

—2 2 (axy -+ bxs + €) pidw — 2 S (axy — biry) Tyxadod

F==0 i=0 B
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while in (4, 1) the relation (3, 5) yields

do,,! dw;,!
| ot = ot

m N;

Coo®oo — Z Z Cixwjk

j=0 k=1

(4.3)

dw;.1
dl+S(I),- Ll
l

The cantilever will experience pure bending without torsion, if the constant C s
found from the formula (3, 2),

Substituting (3. 2), (4.2) and (4. 3) into (4. 1) we obtain the torsional moment M.k
which, together with the force P acting along the Oxz,~axis at the point (O will
cause torsionless bending of the cantilever, The moment is equal to

m (4. 4)
Mo = P{Y [ 08: — asy)| @20 —
j_o mj
T +v S (bzy — ax,) Djdo + S (axy -+ bxy - e)cp,-dm] —
(D] j
[ 1 + Vo (aze,™ — bx1,™) + o (bS a— as 1)] CooWoo +

No

D [y (@ — bauc™) + < (083 a8 Coons

Z Ty (@mad® — o) 4 = (65, — a83)| Civon}

=1 k=1

Let us add the force P  to the torsional moment Mk as given by (4.4). Then the
coordinate of the point of applicatiqn of the resultant force &y, = ! P.
Using the expression for the complex torsional potential ¥ (2) = — § ((p + i)
where ¢ = @ + Y, (,®> + 2,%)  and taking into account (4.4), we obtain the
following final 1 expression for the coordinate zy, :

Ty = ZS (a2y + bzy + &) Im F; (z) do — Z{——(bs, —

=0 o; i=o0

(4.5)

asl)g [ReFj (2) — 5 (@:* + )] do — :j \ om —

azxy) [Be F;(z) — 2 (z,® + x22)] dco} + ZZPM [
bz, ¥y 4- = (b82 _ aSl)_, Cini i=0 k=p

1’ when j=Fk =0
ij"{

— 1, otherwise

j .
vj (d.l'ch" -
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Let us now direct the force P parallel fo the (g, axis. This will give, in the
same manner, the coordinate Ty = M, ot/ P oor finally,

m ~ (4.6)
T10 = — ZS (@471 + byZa + €4) Im Fj (z) do +- 2 {'1—‘ (0482 —
bond y Xo
=0 @; 3=0
1
ax81) | [Re F; @) — (@ + 28) | do —
j
_..Y._j_ ' box R F 1 2 2
T+v; (byty — ays)| Re f(z)'—‘"'g—(xl + 2y )] dm}——~
oF
m N
S Y3 ik ik
it | ToyT (@aec™ — baad®®) -+
=0 k=0 ’
1
o baS2 — ,81) | Cinoi
i 112(!}%8152 {Sz“‘““m}‘.} I S‘“‘I S
= - ) *:sz,e*z anizz
The coordinates  (Zy0, Zao0) are called coordinates of the center of flexure,

In the case when the cantilever is made of a homogeneous material, the formulas
for the coordinatgsk of the center of flexure (4. 5) and (4, 6) will become, using notation
xlc]k =xlck1 xzc] = xzck, C:‘k = Ck, Wjx= @

Ty = S(axl + bxs + e}y Im F (z)do 4~ i—‘:?‘\«’g {S{b(:‘:l—‘xlc)“

@ (g — Z20) (Be F @) — 5@ +a) |do— b — o) —

8 (70" — B3:) Coto | + ', [b (@1 — 1) — @ (zac® — ac)} Crn

’S:.::I

Tyo = — S{a*% + bywy -+ ey) Im F (2} do — i :_“VO {S by (@1— o) —

w (o4

G (3 — 23 [Re F () — 5 (@1 + 238) | dor —

{b* (a':l‘:O - xlc) — Gy ('Z%ca . mﬂc)l Como +

n

2 {bg {xlck - -'Elc) = Oy (x%k — Z3o)] Ckmk}

The above for’r‘rTI;las were deri\ied in [3,4] and quoted in [5]; however they contained
sign errors, Here &y, and Ty are the coordinates of the center of gravity of the
area ® of the transverse section, and n  denotes the number of cutouts in the
crass section,

For a singly-connected cross section the formulas for the coordinates of the center of
flexure can be obtained from the last two formulas by equating to zero the third of the
terms contained within the curly brackets,
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