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It was noted in [l] that the center of flexure of a solid cantilever can be deter- 
mined if the solution of the problem of torsion of this cantilever is available. 
This assertion was generalized in [2] to the case of a hollow cantilever, In the 
present paper the formulas obtained earlier [3,4] for the coordinates of the ce- 
nter of flexure of a hollow cantilever are generalized with the help of acomp- 
lex torsional function, to the case of a hollow compound cantilever. 

I. Let us consider a cantilever composed of multiconnected prismatic bodies made 
of different materials and joined together along their lateral surfaces. Then the region 
occupied by any transverse cross section of the cantilever will consist of piecewise diff- 
erent inclusions SI (i = 0,1, _ . . , m) where m is the number of inclusions wi- 
thin the region Se with the lines of contact Lee* fq z 1, 2, . , ., m). We also 

Fig. 1 

denote the contours of the cutouts of the inclusions S, by Lfk (k = 0, 1, 2, . . ., Nj) 
where Nj is the number of the inclusion cutouts. We introduce the following notation: 

L = &Z. I*jh 1 = 5 3 lj, 
j=o q=1 

L' = L + 1, CO C 5 Oj 
j=O 

HereL denote the sum of the contours of the regions s,, lfk are the cut lines, L’ 
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is the contour of a singly connected region and 01 is the area of the region. 
Let a prismatic body of length 1 be clamped at one end and subjected at the ot- 

her end to a load statically equivalent to a force P. We place the coordinate origin 
at any point of the clamped end. TheOxflxis is directed parallel to the cantilever ax- 
is and the&&axis is parallel to the force P (see Fig. 1). The components of the stre- 
ss tensor generated by the bending of the cantilever are sought in the form [I] 

Crll = “ss = 01, ‘- 0 

o ss = P (at+ + bq. + e) (1 - x3) 

(1.1) 

cl 
P 'Xj 

81 = -lj- ( -q+ axlz + exl 
> 

P 
fJ3a = 2 - 2 + bxS2 + ex2) 

Here X = X (XI, Ga) 
known constants. 

is an unknown function, and a, 6 and e are un- 

The components of the stress tensor g33, CT31 and o,, must satisfy the following 
conditions of equilibrium in the *a cross section: 

5s 0,,a0 - P = 0, 
j=O oj 

5 S 03aaa = 0 
j=o Dj 

$ s (w32 - 53(~3,) a@ = 0 
j=O Oj 

is o,,ao = 0, ioii 033xZa0 = 0 
j=o Oj 

joii 033x1a0 -+ P (2 - x3) = 0 

(1.2) 

Substituting the second relation of (1.1) into the conditions (1.3), we obtain a linear al- 
gebraic system the roots of which are 

Here Ij, aa and Sj, a are the moments of inertia and the static moments of the a- 

rea Oi relative to the x1_ and xs_ axes. 
The last two relations of (1.1) satisfy the differential equations of equilibrium ident- 

ically. When the relations (1.1) hold, the six Beltrami-Mitchell expressions yield the 
following expression for the function xj (here C is the constant of integration): 
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The conditions of zero loading at the lateral surface of the cantilever yield a boundary 
condition of the form 

2. Let us write the function XI in the form 
(2.1) 

Then the following problems arise for the functions mi and Yyri : 

(2.2) 

(2.3) 

AYj = - UX2) I( Sj 

aYi 
- = (bX*’ + C&) 3 - (UXl" + t?Xl) “$ OR l;jk 

a1 

where @i is the Prandtl stress function and yj is the fLexme function. The first and 
second condition of f 1.2) are satisfied identicaffy, 

To find the torsional momentMek we substitute the two last relations of (1. I) into 
the left-hand side of the condition (1.2) and take into account (2.1). After a series of 
manioulations we obtain 

(2.4) 

where the symbol [...I&* denotes the increment in the value of the function wi- 
thin the bracket during a single passage around the contour L’. 

3. Let us recall certain relations which shall be used later. 
The mean value of the torsion 7 for the whole transverse cross section is given, 

according to [IJ, by the formula 
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Using Hooke’s law and the last two formulas of (1.1) and taking (1.4) into account, we 
obtain 

z = P (as1 - b& + Cx,) (3.1) 

m m 

& = 
c 

-&.a:, sa= 
j=o 3 

c 
+1j, X0= 

j=o 3 

where (JIC’P SC? 
relative to the ‘z,+ and 

are the coordinates of the center of gravity of the area o+ 
x2 axes. 

We see from’ the formula (3.1) that the cantilever will experience pure flexure wi- 
thout torsion if the constant C is found from the formula 

c = + (bS, - Ia&) 
(3.2) 

Using Green’s formula 

\ (ujnvj - Vjnuj) do.= S (uj 2 - Vj 2) dz (3’3) 
0. L 

for Uj = 1 and Vi=Yj and taking into account the first formula of (2. 

3), we obtain 

s l)Y. 2v (3.4) 
-$ a1 = - - 

l-tv ( ax2c - bxlc) a* 

L. 

Here L, denotes an arbitrary closed contour traversed anticlockwise, lying in the cross 
section of the cantilever, and XaC, 33,~ are the coordinates of the center of gravity of 

the area CO* contained within L,. 

The above formula must hold for eachinternal contour within the cross section, and 
also for the outer contour of the cross section. 

Using the fact that the function @j is single-valued and, that ajki- ti wjRr+ - 

Ojk, dljl: = --dl/k-, we find that 

s 

(3.5) 
dl = 0 

1 
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In addition to the formulas (3.2), (3.4) and (3.5) we have 

(3.6) 

s 
CD 

‘ik ‘ik 

the validity of which shall be shown below. 

Let us introduce a new harmonic function 

Ypjr = Y?j- 

We also have [5] 

mi 4J. mj 'Cpj (3.8) 
-= 
8x1 

-I- ICI, 
ax2 

az,=as,-“a 

The projection of the displacement on the Ox3 axis can be found from the formula [5] 

(3.9) 

Usi = L&j0 + Oinj (Xx - X$) + 

i’ b,, + (XL ,- ,x,) (3 - 2)] dx, 
J 

MO 
n 

We can assume, without affecting the generality, that usp = @knP = 0. 

Taking into account in (3.9) Hooke’s law, the two last formulas (1. l), (2. 1) and 

(3.8) and introducing the harmonic function Yja, conjugate to Yyi,, we finally ob- 

tain, after integration 

l&j = ~f(-Yja+Cw)+~[(~~-51)~(-yjl+ 
3 1 

CcPj) + (12’ - Xa) & (- yja I- Ccpi) f F ($1, % X3) 

where (F (Xl9 Xa:2, ~3) is a polynomial. 
Since uaj and ‘pj are singlevalued functions, SO is Yja . Thus dYji / al 

and dYji I dn and consequently aYj / dl and aYj / Bn are eq- 

ual to each other along the cut edges, which completes the proof. 

4. Applying the Green’s formula (3.3) to the functions QD, and Y j and ta- 
king into account the first equations fo (2.2) and (2.3), we obtain 

m 
2vj ,a 

m 

c 1$-‘j\ @Xl - UX,) @jUh + 2 
u 

Y?jdo = 
j=O "i j=O y 

!.i 

@j!g-yj~ dl 

) 
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Taking due account in the above relations of (3.4H3.6), (3.8) and of the fact that 
on traversing the contour L’ the increments IqQ Y&r+. s 0 and 

fPl?j / 41) dE = 0, we obtain 1 
* rpj 
J 

where Cjr denote the values of dij on the contours LJ~, Ojk is the area enclos- 
ed within the contour An and (zICik, q,Cjk) are the coordinates of the cen- 
ter of gravity of the area @citfk* This gives the second term of the last equation which, 
on substitution into (2.4). yields 

Using the boundary condition (2.3) and the ~auss-~~ogra~~t formula and taking (3, 
8) into account. we find that in the last formula 
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while in (4.1) the relation (3.5) yields 
(4.3) 

m Nj 

cooooo - cl2 Cjkojk 

j=o k=l 

The cantilever will experience puce bending without torsion, if the constant C is 

found from the formula (3.2). 

Substituting (3.2), (4.2) and (4.3) into (4.1) we obtain the torsional moment M,r 

which, together with the force P acting along the OXI+axis at the point 0 will 

cause torsionless bending of the cantilever. The moment is equal to 

m 

M ck = p EC 
j=o 9 

(4.4) 

-L S (bX1 - UXa) cDjUh + [ (ml + bS + e) Tjdw] - 
I +vj 

*i Oi 

[ 
vo - (UX~O” 

1 +vo - bXlc00) + $ (h% - u&)] coo~oo + 
NO 

Z[ vo -( OR 0x2,, 
k=l 

.I + vo 
- bx~;~) + -& (b&a - a&)] cOk@Ok + 

m Nj 
V. 

3 (axz$k 
I + vj 

- bs~,j’) + $- (bSa - USI)] cjkajk} 
0 

Let us add the force P to the torsional moment M,r as given by (4.4). Then the 

coordinate of the point of applicatiqn of the resultant force Xso = - Mck / p. 
Using the expression for the complex torsional potential F (z) = - i (9 + iv) 
where 9 = 0 + ‘12 (XI2 + XzCa”) and taking into account (4.4), we obtain the 

following fina&exocession for the coordinate xqc,, ; 

ES 

m 
Xao = @I 4- bxa -I- e)Im Fj(z)do- 

j==0 rni .X1 
&(bSp - 

(4.5) 

j=O 

G) * 
\I 

ReFj(z)-_ b2 + F?,] do - + 1 (bx, - 

~,)~Re~j(z)-t(~:+~14]~~}+~,~~jk[~(ax~~jk_ 

bxlcjk) -+- Y$ (bS8 - a&)] Cjkmjk 
j=o k=O 

6jk = 
I, when j=k=() 

- 1, otherwise 
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Let us now direct the force B parallel to the 0~~ axis. This wit1 give, in the 
same manner, the coordinate 

%:rcl 
= &&$/ p or finally, 

510 = - 2s @*$I, + &.% + @*) Irn. Fj (2) &I + $J {+*&I - 

(4.6) 

j-a oj j==O 



Center of fiexure of a hollow compound cantilever 517 

REPEPENCBS 

1. Novozhilov, V. V., Theory of Blasticity. L. , (English translation), Pergamon 
Press, Bookl$ 09523, 1961. 
2. Prokopov, V. K., On the center of gravity of a multiply-connected cross-sec- 
tion.L., Nauchno-tekhn. inform. biul.politekhn. inst., NE! 7, 1960. 
3. Amenzade, Iu. A. and Bubuteishvili, L. 0. t Center of flexure of a 
cantilever with a multiply-connote transverse section. Dokl. Akad.Nauk AzerbSSR, 
vol. 29, Ng lo, 1973. 
4. Amenzade, Iu. A. and Bubuteishvili, L. 0.) Determination of the 
center of flexure of a cantilever with a multiply-connected transverse section. Uch. zap, 
Azerb. univ, * Ser. fiz-matem. nauk, K 1, 1975. 
5, Am en z a de, Iu . A, , Theory of Elasticity. M. ,“Higher School “, 1976. 

Translated by L. IS. 


